Measuring Lipophilicity with NMR
Contents

- Objectives 1
- Introduction 1
-Determining log P_{ow} for some common solvents 2
- Example 1H spectra 3
-References 9

Manuscript prepared by Dr. Hemi Cumming.
School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand.
Objectives

The aim of this experiment is to determine the 1-octanol/water partition coefficient (P_{ow}) of some common solvents (which will be the analyte in this experiment). Students will quantify the amount of the chosen analyte in water, before and after the addition of 1-octanol layer by NMR spectroscopy using the benchtop Spinsolve NMR spectrometer (Figure 1). This information will allow the calculation of the P_{ow} and log P_{ow} of the analytes.

Introduction

The lipophilic (“fat-loving”), or conversely the hydrophilic (“water-loving”) behaviour of a molecule is an important physicochemical property. From a pharmaceutical perspective, this property for a drug-like molecule strongly influences its distribution within the body. The typical method for determining the lipophilicity of a substance is to measure its distribution between two immiscible solvents, usually 1-octanol and water.

This allows for the calculation of the 1-octanol/water partition coefficient (P_{ow}) and its logarithm (log P_{ow}). As stated by Lipinski’s “Rule of 5” for orally active drugs, a substance will have better drug-likeness if its log P_{ow} is no greater than 5.1

In this experiment, the log P_{ow} for some common solvents will be experimentally determined by 1H NMR and compared to literature values.

Figure 1. Representative diagram of analyte distribution between the water and 1-octanol layers upon addition of 1-octanol.
Determining log P_{ow} for some common solvents

Safety
Acetone, acetonitrile, 2-propanol, THF, ethanol, tert-butanol and 1-octanol are highly flammable, handle with caution.

Procedure
Place approximately 200 μL of acetone and exactly 500 μL of water into a clean, dry NMR tube, cap the tube and invert to mix.

Record 1H NMR spectrum of the solution, obtain integration values for the acetone and water peaks. Normalise the water peak to a value 1.00.

Add exactly 500 μL of 1-octanol to the NMR tube, cap the tube and invert 15-20 times to mix well. Allow the layers to separate (approximately 5 minutes).

Record another 1H NMR spectrum of the solution, and again obtain integration values for the acetone and water peaks. Normalise the water peak to a value 1.00.

Use integration values to calculate the P_{ow} and the log P_{ow} of acetone and write on a large whiteboard.

Using at least 4 other values (obtained by other students), calculate the mean and standard deviation.

Repeat the above procedure, replacing acetone with one of the following: ethanol, 2-propanol, acetonitrile, THF or tert-butanol.

Calculations
The octanol/water partition coefficient (P_{ow}) is equal to the concentration of analyte in the organic layer (C_0) divided by the concentration of the analyte in the water layer (C_w).

The amount of water should be the same before and after the extraction, because water is insoluble in 1-octanol. Therefore the two integral values we have obtained for the analyte are directly proportional to the concentration before and after the extraction.

Thus, the following equation can be used:

\[
P_{ow} = \frac{C_0}{C_w} = \frac{I_w - I_{wo}}{I_{wo}},
\]

where I_w and I_{wo} are the peak values of the analyte in water and in water with 1-octanol added.
Example 1H NMR spectra

Acetone

Figure 2. Spectrum of acetone in water (top) and with a layer of 1-octanol (bottom).

$$P_{ow} = \frac{C_o}{C_w} = \frac{0.197 - 0.124}{0.124} = 0.589$$

$$\log P_{ow} = -0.23 \text{ (literature value = -0.24)}$$
Figure 3. Spectrum of ethanol in water (top) and with a layer of 1-octanol (bottom).

\[P_{ow} = \frac{C_o}{C_w} = \frac{0.183 - 0.121}{0.121} = 0.512 \]

\[\log P_{ow} = -0.29 \text{ (literature value = -0.30)} \]
Figure 4. Spectrum of THF in water (top) and with a layer of 1-octanol (bottom).

\[P_{ow} = \frac{C_0}{C_W} = \frac{0.152 - 0.041}{0.041} = 2.707 \]

\[\log P_{ow} = 0.43 \text{ (literature value = 0.46)}^2 \]
Figure 5. Spectrum of tert-butanol in water (top) and with a layer of 1-octanol (bottom).

\[P_{ow} = \frac{C_o}{C_w} = \frac{0.197 - 0.060}{0.060} = 2.28 \]

\[\log P_{ow} = 0.36 \text{ (literature value = 0.35)}^2 \]
2-Propanol

Figure 6. Spectrum of 2-propanol in water (top) and with a layer of 1-octanol (bottom).

\[P_{ow} = \frac{C_o}{C_w} = \frac{0.249 - 0.109}{0.109} = 1.28 \]

\[\log P_{ow} = 0.11 \text{ (literature value = 0.05)} \]
Figure 7. Spectrum of acetonitrile in water (top) and with a layer of 1-octanol (bottom).

\[
P_{\text{ow}} = \frac{C_0}{C_W} = \frac{0.098 - 0.075}{0.075} = 0.307
\]

\[
\log P_{\text{ow}} = -0.51 \quad \text{(literature value = -0.34)}^2
\]

Acetonitrile
References
