Traditional Undergraduate Experiment: Synthesis of Aspirin
Contents

Objectives 1
Introduction 1
Synthesis of salicylic acid from oil of wintergreen 2
Procedure 2
Risk Assessment 3
1H-NMR Spectra 3
Synthesis of aspirin from salicylic acid 4
Risk Assessment 5
1H-NMR Spectra 5
Tasks and Questions 6
Introduction

Aspirin is a pain relieving compound that most students will be familiar with, thus its synthesis gives students an insight into how chemistry is used in real-life applications. The synthesis of aspirin may be achieved in one simple step, O-acetylation of salicylic acid (Figure 1), which is incorporated into many undergraduate synthetic chemistry laboratory courses. The purity of the product as a pharmaceutical is crucial, and therefore students must determine the purity of their product. Typically this is done using thin layer chromatography (TLC), and here we introduce ^1H-NMR spectroscopy as a means of determining the purity of their sample and giving students experience in reporting the chemical shifts of a synthetic product. To do this, students obtain ^1H-NMR spectra of their starting materials, crude and purified products.

An additional step may be added to the synthesis of aspirin: conversion of oil of wintergreen (methyl salicylate) to salicylic acid (Figure 2). This serves as an introduction to multi-step synthesis and the concept of converting a naturally occurring substance into one with therapeutic value. This also gives students an additional compound to isolate, purify, determine yield and characterise by ^1H-NMR spectroscopy.

Objectives

The aim of the experiment is to introduce NMR spectroscopy into a traditional undergraduate organic chemistry experiment. Students synthesise aspirin and evaluate the purity of their product using ^1H-NMR spectroscopy. This laboratory introduces students to aspects of practical organic chemistry including synthesis, crystallization, stoichiometry, and percent yield.
Synthesis of salicylic acid from oil of wintergreen

<table>
<thead>
<tr>
<th></th>
<th>Methyl Salicylate</th>
<th>Salicylic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Mass</td>
<td>152.15 g mol⁻¹</td>
<td>138.12 g mol⁻¹</td>
</tr>
<tr>
<td>Stoichiometry</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Density</td>
<td>1.17 g mL⁻¹</td>
<td>Solid</td>
</tr>
<tr>
<td>Moles</td>
<td>0.03 mol</td>
<td>Theoretical: 0.03 mol</td>
</tr>
<tr>
<td>Mass</td>
<td>4.68 g (4 mL)</td>
<td>Theoretical: 4.14 g</td>
</tr>
</tbody>
</table>

Procedure

Add methyl salicylate (4 mL) and 6 M sodium hydroxide (40 mL) to a beaker and stir. Heat with occasional stirring until mixture reaches a gentle boil. Continue gentle boil for 15 minutes. During heating, wash solid from the sides of the beaker with a little distilled water. After heating, cool the reaction mixture in an ice bath until warm to touch. Leaving the beaker in the ice bath, add 8 M sulphuric acid (50 mL) to the reaction mixture with stirring. Leave mixture in the ice bath until chilled and crystals form. Isolate the precipitate using Buchner filtration and rinse the solid with a little cold distilled water. Obtain a yield and ¹H-NMR spectrum (in chloroform-d) of the crude product. Recrystallise the crude product from distilled water and dry crystals in a desiccator. Obtain a yield and ¹H-NMR spectrum (in chloroform-d) of the purified product. Also record the ¹H-NMR spectrum (in chloroform-d) of methyl salicylate.

Risk Assessment

Methyl salicylate and salicylic acid are combustible and harmful if swallowed. Sodium hydroxide is corrosive, alkaline and causes severe burns. Care must be taken when making up the 6 M solution as dissolving sodium hydroxide pellets is exothermic and can become very hot. Sulfuric acid is corrosive, acid and causes severe burns. Care must be taken if the 8 M solution is prepared from concentrated sulfuric acid that the acid is added to the water, and not the other way around.
Figure 4: Crude and recrystallized salicylic acid.

1H-NMR Spectra

\[
\text{Methyl Salicylate} \quad \rightarrow \quad \text{Salicylic Acid}
\]

- Methyl Salicylate:
 - OH
 - Aromatic-H

- Salicylic Acid Crude:
 - OH (Methyl Salicylate)
 - OH (Salicylic Acid)
 - COOH
 - Aromatic-H

- Salicylic Acid:
 - OH
 - COOH
 - Aromatic-H
Synthesis of aspirin from salicylic acid

<table>
<thead>
<tr>
<th></th>
<th>Salicylic Acid</th>
<th>Acetic Anhydride</th>
<th>Sodium Acetate</th>
<th>Acetylsalicylic Acid</th>
<th>Acetic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Mass</td>
<td>138.12 g mol(^{-1})</td>
<td>102.09 g mol(^{-1})</td>
<td>82.03 g mol(^{-1})</td>
<td>180.16 g mol(^{-1})</td>
<td>60.05 g mol(^{-1})</td>
</tr>
<tr>
<td>Stoichiometry</td>
<td>1</td>
<td>1 (3, excess)</td>
<td>(Catalyst)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Density</td>
<td>Solid</td>
<td>1.08 g mL(^{-1})</td>
<td>Solid</td>
<td>Solid</td>
<td>1.05 g mL(^{-1})</td>
</tr>
<tr>
<td>Moles</td>
<td>0.014 mol</td>
<td>0.042 mol</td>
<td>0.0047 mol</td>
<td>Theoretical: 0.014 mol</td>
<td>Theoretical: 0.014 mol</td>
</tr>
<tr>
<td>Mass</td>
<td>2 g</td>
<td>4 g (4.4 mL)</td>
<td>0.4 g</td>
<td>Theoretical: 2.52 g</td>
<td>Theoretical: 0.84 g (0.8 mL)</td>
</tr>
</tbody>
</table>

Procedure

To a suspension of salicylic acid (2 g) in acetic anhydride (4.5 mL) in a conical flask add anhydrous sodium acetate (0.4 g) with stirring. Heat the reaction mixture for approximately 15 minutes. When the solid has dissolved, remove from the heat and add distilled water (20 mL). Place the flask in an ice bath until the mixture has chilled and crystals have formed. Collect the precipitate by Buchner filtration and rinse the solid with cold distilled water. Obtain a yield and \(^1\)H-NMR spectrum (in chloroform-d) of the crude product. Recrystallise the crude product from distilled water and dry crystals in a desiccator. Obtain a yield and \(^1\)H-NMR spectrum (in chloroform-d) of the purified product. Also record the \(^1\)H-NMR spectra (in chloroform-d) of acetic anhydride and salicylic acid (if the first step of the synthesis was not carried out).

Risk Assessment

Acetylsalicylate and salicylic acid are combustible and harmful if swallowed. Acetic anhydride is corrosive, acid, can cause severe burns and is highly flammable. Ethanol is highly flammable.
Figure 3: DEPT (4 scans, 10 s repetition time) and 1D 13C-NMR (1 scan, 30 s repetition time) spectra of neat 1-butanol. Whichever set of spectra is used, it can easily be seen that there are 4 carbon environments (1D-13C), there are no tertiary carbons (DEPT-90) and there are three CH$_2$'s and one CH$_3$ (DEPT-135). Students use this information combined with the principles of electronegativity to assign the chemical shifts in the molecule they have identified.

Figure 6: Crude and recrystallized aspirin.

1H-NMR Spectra
Tasks and Questions

1. Calculate % yield for each step of the synthesis.

2. Assign the peaks in the 1H-NMR spectra of all starting materials and products, and identify functional groups that are unique in each sample.

3. Identify the impurities in the crude products. Did recrystallization remove these impurities?

References
