Subscribe to Monthly Blog Updates

ICOMC 2018 – Florence, Italy from 15th to 20th July 2018

July 6th, 2018, by

Magritek is delighted to announce its participation in the 28th International Conference on Organometallic Chemistry in Florence, Italy from 15th to 20th July 2018. Please stop by at the Magritek Booths and talk to our scientists about the capabilities and applications of Spinsolve Benchtop NMR system. Our applications and support team will have a live, working Spinsolve Benchtop NMR.

The congress will be held on Centro Congressi Piazza Adua,1 , 50123 Firenze FI,Italien.


Live Benchtop NMR monitoring of Corning Flow Reactors at Achema

June 11th, 2018, by

At the Achema conference this week in Frankfurt we have a joint booth with Corning Advanced Flow Reactors.  We are running a live Spinsolve Benchtop NMR reaction monitoring setup in combination with a Corning Advanced Flow Reactor.  If you are Achema, please come and visit us at our joint booth with Corning AFR Hall 9.2 / Booth A32 and see the powerful combination of Corning Flow Reactors and Magritek Benchtop NMR.


Measurement of oil adulteration

May 7th, 2018, by

Due to their high retail value, some edible oils are often blended wilfully with other more inexpensive vegetable oils. Two recent publications by Kim et al. and Krause et al. in international journals were able to demonstrate that Spinsolve 1H benchtop NMR spectroscopy is a possible cost-effective method for discriminating the authenticity of some vegetable oils.

Patchouli oils

Overlaid 60 MHz 1H‑NMR spectra of genuine patchouli oils spiked with 9 different adulterants at 20%.


Thought Leader Interview: Prof Patrick Giraudeau

February 19th, 2018, by

A fascinating thought leader interview with Prof Patrick Giraudeau from the University of Nantes discusses how his group uses their Spinsolve benchtop NMR spectrometer for applications such as reaction monitoring, edible oil analysis and implementing ultrafast 2D NMR.

Benchtop NMR systems are better suited to reaction monitoring than high-field systems


Harrisburg University Uses the Spinsolve 60 MHz System as Part of Their Undergraduate Teaching Program

June 27th, 2018, by

Dr Catherine Santai is an Associate Professor of Chemistry & Biochemistry and Program Lead of the Integrative Sciences program at Harrisburg University of Science & Technology. The program utilizes a number of analytical techniques teaching undergraduates about their use, giving them the experience ahead of entering research or industrial roles in later life. So far, the Magritek 60 MHz Spinsolve Benchtop NMR Spectrometer has been used in the Organic Chemistry and Biochemistry laboratory sessions. These provide invaluable hands-on lessons about NMR techniques and analysis of a variety of compounds. NMR is used alongside FTIR (Fourier transfer infrared), AAS (atomic absorption), UV-VIS (ultraviolet – visible) and fluorescence spectroscopies.


The APT Experiment

June 7th, 2018, by

The Attached Proton Test (APT) is a very useful experiment that, like DEPT, provides information about how many hydrogens or protons are attached to a particular carbon atom. Both DEPT and APT do this by “editing” the spectrum so that the carbon signals point either up or down depending on the number of attached hydrogens. APT differs from DEPT in several significant ways, though. The first is that quaternary carbons (i.e. carbons that bear no hydrogens) are retained in the APT spectrum, whereas they are absent in DEPT (though there are variants of the traditional DEPT experiment that do retain the quaternary signals). In APT, quaternary and methylene carbons point down by convention, while methyl and methine carbons point up. Figure 1 shows a comparison of a conventional carbon, APT and DEPT-135 spectra of a sample of propyl benzoate.


Characterizing Fatty Acids with advanced multinuclear NMR methods

April 6th, 2018, by

Download the full application note by clicking here (PDF)

Fatty acids consist of long carbon chains ending with a carboxylic acid on one side and a methyl group on the other. Most naturally occurring fatty acids have an even number of carbon atoms and can be either saturated or unsaturated. Unsaturated fatty acids have one or more double bonds between carbon atoms. Typical fatty acids found in vegetable oils are saturated palmitic acid (C16:0) and stearic acid (C18:0), as well as oleic acid (C18:1) with a single double bond starting at carbon nine (omega-9), linoleic acid (C18:2) with two double bonds starting at position 6 (omega-6), and alpha-linolenic acid with three double bonds starting at position 3 (omega-3).

Quantification of hydrocarbon content in water analysis at ppm level using benchtop NMR

June 20th, 2018, by

The permitted hydrocarbon content of discharged water from offshore oil and gas exploration is becoming increasingly limited by more stringent legislation. This creates the demand for measurement methods that are sensitive enough to detect contaminants at ppm level, but also compact and robust to field conditions. The group of Professor Mike Johns at the University of Western Australia in Perth has developed a benchtop NMR method to quantify the hydrocarbon content in water at the ppm level.


1H and 13C Peak Assignments of Quinine Using 1D and 2D NMR Methods: Part 1

June 7th, 2018, by

Assigning peaks in the NMR spectrum is a fundamental part of structure verification. Depending on a variety of factors including the size and complexity of the molecule, and the field strength the NMR data are collected at, this can be a straightforward exercise or an extremely challenging one! For example, in the case of a fairly simple compound like lidocaine, it is relatively easy to assign all of the peaks directly in the 1H spectrum using a 43 MHz benchtop NMR spectrometer. However, as a compound’s molecular weight increases so the spectra tend to become more complex, with more resonances and, inevitably, more signal overlap. Assigning the peaks thus becomes significantly more challenging, which is where collecting 2D NMR spectra can help with completing the assignments.


Wageningen University & Research uses the Spinsolve 60 MHz System as Part of Their Undergraduate Teaching Program

February 21st, 2018, by

Wageningen University & Research (WUR) is formed from the collaboration between Wageningen University and the Wageningen Research foundation. With the mission “to explore the potential of nature to improve the quality of life,” its staff and students work in the domain of healthy foods and living environments. Dr Teris van Beek is a Lecturer in the Department of Agrotechnology & Food Sciences. Among his responsibilities is the coordination of the undergraduate course in analytical chemistry where 220 molecular life sciences and biotechnology students are introduced to practical spectroscopy each year (UV, IR, MS, NMR, structure elucidation).