Subscribe to Monthly Blog Updates

How to Evaluate a Benchtop NMR Instrument’s Technical Performance Part 3: 1H sensitivity

July 4th, 2019, by

In my recent posts on evaluating benchtop NMR system performance, I discussed the fundamental role the static (B0) magnetic field homogeneity plays in defining the lineshape and with it the resolution performance of the instrument. However, the quality of the magnetic field affects much more than just the instrument’s lineshape and resolution: since broadening of the lines due to B0 inhomogeneity causes them to be lower in amplitude, the quality of the field also directly affects the instrument’s sensitivity. In this post I explore the concept of instrument sensitivity in more detail and look at how to measure  1H sensitivity.

 

What is Meant by Sensitivity?

A formal definition of sensitivity is the ability of an instrument to detect a target analyte. This is usually expressed in NMR as the signal-to-noise ratio (SNR) for a defined concentration of reference substance. Simply put, the more sensitive the NMR spectrometer, the less sample you need to get the same SNR in your spectrum. The two principal enemies of any analytical measurement are higher noise levels and a lower intensity of the signal measured by the instrument’s detector for a sample of given concentration. With modern electronics the noise levels are consistent and should not vary much between different instruments.  This means the sensitivity depends primarily on the signal amplitude, which in turn depends on the lineshape and resolution of the instrument. A poor lineshape results in spectra with broad lines that are lower in amplitude, which decreases the SNR, thereby degrading the sensitivity of the instrument and increasing the amount of sample and/or measurement time required to get the same SNR in the spectrum, as we will see below.

(more…)

ISMAR EUROMAR – Berlin, Germany, 25 to 30 August 2019.

June 18th, 2019, by

Join Magritek at EUROMAR 2019 in Berlin, Germany from 25 to 30 August 2019. You’ll get a chance to meet us, learn about our company and we’ll get you acquainted with the  Spinsolve – high-performance benchtop NMR spectrometer that offers impressive sensitivity and resolution, it is robust and easy to use. We are looking forward to seeing you at this conference !!!

Magritek will be running a workshop on the Henry Ford Building, on Wednesday 28.08.2019 ( the Room number has to be confirmed ), for registration please contact Mauricio Ferreira – mauricio@magritek.com

Venue:

The conference will be taking place on the Dahlem Campus of the Free University, in the southwest of Berlin. The address of the main conference venue is:

Henry Ford Building
Freie Universität Berlin
Garystraße 35
14195 Berlin-Dahlem

The address of the additional sites used during the conference is:

Harnack-Haus. The Conference Venue of the Max Planck Society
Ihnestraße 16-20
14195 Berlin

 

 

26th International Symposium: Synthesis in Organic Chemistry – 15-18 July 2019, Cambridge, United Kingdom.

June 18th, 2019, by

Magritek is excited to announce that we will be participating at the 26th International Symposium: Synthesis in Organic Chemistry which is being held at Churchill College, Storey’s Way, Cambridge, CB3 0DS, the United Kingdom on 15th to 18th July 2019.

Magritek will have a live Spinsolve system running experiments, we would love for you to visit us and talk to our team about the capabilities and applications of our latest Spinsolve Benchtop NMR Systems.

We look forward to seeing you at this event!

How to Evaluate a Benchtop NMR Instrument’s Technical Performance: Part 1

June 13th, 2019, by

When evaluating a benchtop NMR instrument there are several key performance characteristics that have a very significant impact on how the instrument will perform in your lab. These key performance characteristics are:

  • The spectral resolution, which is directly related to the magnet and determines the width or shape of the NMR lines (often called lineshape), and in turn the ability to separate signals in the spectrum
  • The sensitivity which determines the limits of detection (LOD) and quantitation (LOQ), and in turn how long sample measurements take
  • The stability of the magnet and instrument over time, which impacts the ability to make longer measurements, and the overall ease of use of the spectrometer

Before I examine these performance characteristics in more detail, it’s worth emphasising from the outset that the biggest aspect of a benchtop NMR system’s design that dictates how well the system performs is the “quality” of the magnetic field produced by the magnet. By “quality” we are referring to how uniform the magnetic field is over the sample volume, often referred to as the B0 homogeneity. To illustrate the importance of this key aspect of magnet design, Figure 1 shows a series of spectra collected under varying degrees of B0 homogeneity.

Figure 1. Effect of static magnetic field (B0) homogeneity on the NMR spectrum. As the homogeneity gets worse, both the resolution and sensitivity are negatively affected. The series of spectra on the left are shown at the same scale and show how the 2 peaks can no longer be resolved, and the signal intensity decreases. The series on the right is the same spectra shown with the peak intensities normalised which how the signal-to-noise ratio is decreasing (the noise is increasing) when the field is less homogeneous.

 

(more…)

Introducing the new Spinsolve Autosampler

February 18th, 2019, by

We are very excited to announce the launching of our new Spinsolve Autosampler.  It enables up 20 separate samples to be measured in any order and can be fitted to all Spinsolve models.  We have been developing this for some time, and already have quite a number of units with some of our reference customers who tell us they are delighted with its operation, functionality and high quality construction.

The Autosampler is particularly useful for customers who often have a series of samples to run on their benchtop NMR and want to save the hassle of having to keep coming back to exchange samples. Another benefit is the ability to increase utilization by setting up a queue of experiments to run on their Spinsolve overnight.

(more…)

Multiple peak solvent suppression with 13C decoupling

June 25th, 2019, by

In a previous post we demonstrated the use of multiple peak solvent suppression on the Spinsolve ULTRA benchtop NMR spectrometer.  While the sequence effectively suppressed 3 NMR solvent peaks, it did not reduce the carbon satellites of the solvent which are at a different frequency, and had a similar intensity to our compound of interest and therefore might interfere with our measurements. Fortunately on a Spinsolve ULTRA Carbon spectrometer we can use the carbon channel to do 13C decoupling at the same time as suppressing the solvent peaks.  An example of multiple peak solvent suppression with carbon decoupling is shown below in Figure 1. Notice how the peak labelled with the purple dot is revealed once the carbon satellites are suppressed.

Figure 1: The image above shows a 1D proton spectrum of 170 mM Paracetamol dissolved in normal protonated Ethanol acquired with multiple peak solvent suppression at the frequencies indicated by the 3 red arrows on a Spinsolve 60 ULTRA Carbon (top, red). The green dots identify the carbon satellites of the solvent peaks in the spectrum. The second spectrum (bottom, blue) shows the same sample acquired with multiple peak solvent suppression but now with carbon decoupling. This causes the carbon satellites of all peaks to be removed, including those from the solvent. The peaks which remain belong to the paracetamol and are identified with the the blue, orange, purple and yellow dots.

(more…)

EuropaCat 2019 – Aachen, Germany,18 to 23 August 2019.

June 18th, 2019, by

Join Magritek at EuropaCat in Aachen, Germany from 18 to 23 August 2019. You’ll get a chance to meet us, learn about our company and we’ll get you acquainted with the  Spinsolve – high-performance benchtop NMR spectrometer that offers impressive sensitivity and resolution, it is robust and easy to use. We are looking forward to seeing you at this conference !!!

The conference will take place at Aachen, the “triple point of Europe”.

Eurogress Aachen
Monheimsallee 48
52062 Aachen

(more…)

Benchtop NMR characterisation of diethyl phthalate containing land leeches repellent

June 18th, 2019, by

In Vietnam, for the observation of animals in the jungle of the national park of Cat Tien (and in other parts of the country and in Asia), the rangers give the tourists leech socks and a repellent cream for land leeches to put on the socks. Land leeches are terrestrial blood-sucking worm-like parasites. Reading the cream container, I noticed that it contains diethyl phthalate (DEP). Out of curiosity, I dissolved some of the cream in CDCl3 and acquired a NMR spectrum with the Spinsolve 80 MHz benchtop NMR spectrometer.

The 1D 1H spectrum confirms that the cream is mainly composed of diethyl phthalate (Fig. 1, a). A zoom of the spectrum (Fig. 1, b) shows the presence of some additional compounds overlapping with the 13C satellite peaks of DEP (0.55% of the main peaks). To simplify the identification of the additional compounds present in the cream I acquired a 1D 1H spectrum using the carbon decoupling protocol available in the Spinsolve software (Fig. 1, c). This method removes the satellites from the spectra making it possible to detect compounds dissolved at concentration smaller than 1% with respect to DEP.

Typical excipients used in such creams are fatty acid mixtures from butter and/or oils, glycerol/glycine, alcohol (multiplet ~ 3.5 ppm, CH2-OH) and PEG based compounds (peak ~ 3.6 ppm) and even perfume(s).

In our case, the fatty acid peaks are easily recognized. The terminal methyl of fatty acids is observed in region F around 0.8 ppm, the aliphatic chain in region E and probably under the CH3 of DEP, and the olefinic protons of saturated fatty acids around 5.2 ppm in the region A. As no signal is observed around 2.8 ppm, the saturated fatty acids present in the cream are mono unsaturated. The singlet at 2.47 ppm (singlet C) could be a residual solvent like DMSO or 1,3-dioxan, common solvents contaminating cosmetic cream. To check this hypothesis, ~ 2 µL of solvent was added. If the cream contains the solvent, the integral of peak C would increase, but in our case new peaks were observed (data not show). Region B correspond to a CH3 group next to a (mono or di) substituted aliphatic. The area D could be a triplet with a J coupling of 7 Hz. These peaks probably belong to a perfume, where the additional peaks of the perfume molecule overlap with peaks of DEP.

(more…)

Spinsolve 80 Phosphorus – Limit of Detection

May 29th, 2019, by

The best-selling Magritek 80 MHz Spinsolve benchtop NMR is also available with the X-channel set to 31-Phosphorus.  31P NMR spectroscopy is routinely used by chemists to determine structure and measure impurities.  When looking for impurities it is important to know the lower limit of detection (LOD). The LOD is the lowest concentration of a molecule that can be distinguished from the absence  of that molecule.

In NMR it is the sensitivity that determines the  LOD for a particular substance, and the higher magnetic field of an 80 MHz magnet brings a number of advantages including increased sensitivity.  We thought it would be interesting to determine the LOD for tetramethylphosphonium chloride with different acquisition times.  We defined the LOD as an NMR peak with signal height that was 3 times the noise level, i.e. an SNR of 3.


(more…)

Multiple Peak Solvent Suppression

June 25th, 2019, by

The Spinsolve ULTRA is able to suppress multiple solvent peaks (up to 3 separate peaks) which allows you to resolve compounds dissolved at sub-millimolar concentrations in protonated organic solvents, such as ethanol.  While single peak solvent suppression is useful for samples where water is the solvent, many organic solvents have multiple strong NMR peaks.  If you want to resolve or quantify compounds dissolved in an organic solvent, the ability to suppress all the solvent peaks is very useful as shown in Figure 1 below.

Figure 1: The image above shows a zoom of 1D proton spectrum of 170mM Paracetamol dissolved in normal protonated Ethanol acquired on a Spinsolve 60 ULTRA (top, red). The second spectrum (bottom, blue) shows the same sample acquired with multiple peak solvent supression at the frequencies indicated by the 3 red arrows.

(more…)

20th IUPAC International Symposium on Organometallic Catalysis Directed Towards Organic Synthesis (OMCOS), 21-25 July 2019, Heidelberg, Germany

June 18th, 2019, by

Magritek is delighted to announce its participation in 20th IUPAC International Symposium on Organometallic Catalysis Directed Towards Organic Synthesis (OMCOS)- 21-25 July 2019, in Heidelberg, Germany. You will have the chance to talk to our scientists about the capabilities and applications of the Spinsolve Benchtop NMR system. We are looking forward to seeing you at this event!

The venue: Heidelberg Convention Center (Kongresshaus Stadthalle Heidelberg)

 

 

How to Evaluate a Benchtop NMR Instrument’s Technical Performance Part 2: 1H Lineshape and Resolution

June 17th, 2019, by

In this post, I’m going to discuss a specific test for evaluating the resolution or lineshape of a benchtop NMR system. This test is measured on proton (1H) as the NMR spectrum is sensitive to the spectrometer resolution and we can make the measurement with a single scan. Resolution and lineshape refer to the width of a particular NMR spectral line, measured at 50% and 0.55% of the height of the line, as explained below.  The smaller the linewidth value, the better the resolution.

 

1H lineshape and resolution

The information content of any NMR spectrum depends on the ability to observe and resolve different signals, or peaks, in the spectrum. It is easier to distinguish two sharp (narrow) peaks close together, than two broad peaks. The key technical factor defining the sharpness of the lines in the spectrum (the lineshape) is the homogeneity of the magnetic field generated by the magnet.  Although NMR systems utilize an array of coils (“shims”) to further improve the B0 homogeneity, the achievable lineshape and resolution are strongly influenced by the inhomogeneity of the magnet itself. The process of calibrating the field and optimizing the B0 homogeneity is usually referred to as shimming. The homogeneity and resolution will gradually degrade over time, so you should carry out the shimming procedure whenever you want to ensure you have the best resolution your spectrometer is capable of.  You should also do the shimming procedure immediately before making the linewidth test described here.

 

Measuring 1H lineshape and resolution

The way to measure instrument resolution is to collect a spectrum containing a naturally sharp line. The standard approach for is to use a sample containing chloroform in acetone-d6 – the chloroform signal from this sample has a very narrow natural linewidth.1 Figure 1 shows a 1H NMR spectrum sample of a 20% chloroform in acetone-d6 NMR reference sample collected on an 80 MHz benchtop NMR spectrometer. (https://www.sigmaaldrich.com/catalog/product/sial/611859)

Figure 1. 80 MHz 1H NMR spectrum of 20% chloroform in acetone-d6 (“lineshape”) sample

(more…)

ESOC 2019 – Vienna, Austria, July 14 to 18, 2019

May 17th, 2019, by

Join Magritek at ESOC2019 in Vienna, Austria on  31 to April 4, 2019. Please stop by our booth and talk to our scientists about the capabilities and applications of Spinsolve Benchtop NMR system.

We’re hosting a live benchtop NMR
workshop at ESOC
:

Benchtop NMR Spectroscopy:
Applications in Academia and Industry

ESOC registration button

Register for Wednesday, 17th July 10:00 – 12:00Hr

1st Floor, room: Schubert 1-2.

We look forward to seeing you at this event.

Venue:

Reed Messe Wien GmbH
Congress Center

Messeplatz 1
A-1021 Wien